Signal Processing Blockset™ Release Notes

Contents

Summary by Version	1
Version 6.7 (R2008a) Signal Processing Blockset TM Software	3
Version 6.6 (R2007b) Signal Processing Blockset TM Software	8
Version 6.5 (R2007a) Signal Processing Blockset™ Software	15
Version 6.4 (R2006b) Signal Processing Blockset TM Software	19
Version 6.3 (R2006a) Signal Processing Blockset TM Software	23
Version 6.2 (R14SP3) Signal Processing Blockset TM Software	27
Version 6.1 (R14SP2) Signal Processing Blockset TM Software	29
Version 6.0.1 (R14SP1) Signal Processing Blockset™ Software	38
Version 6.0 (R14) Signal Processing Blockset TM Software	40
Compatibility Summary for Signal Processing Blockset™ Software	51

Summary by Version

This table provides quick access to what's new in each version. For clarification, see "Using Release Notes" on page 1.

Version (Release)	New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Latest Version V6.7 (R2008a)	Yes Details	Yes Summary	Bug Reports Includes fixes	Printable Release Notes: PDF Current product documentation
V6.6 (R2007b)	Yes Details	Yes Summary	Bug Reports Includes fixes	No
V6.5 (R2007a)	Yes Details	Yes Summary	Bug Reports Includes fixes	No
V6.4 (R2006b)	Yes Details	Yes Summary	Bug Reports Includes fixes	No
V6.3 (R2006a)	Yes Details	No	Bug Reports Includes fixes	No
V6.2 (R14SP3)	Yes Details	No	Bug Reports Includes fixes	No
V6.1 (R14SP2)	Yes Details	Yes Summary	Bug Reports Includes fixes	No
V6.0.1 (R14SP1)	Yes Details	No	Fixed bugs	No
V6.0 (R14)	Yes Details	Yes Summary	Fixed bugs	No

Using Release Notes

Use release notes when upgrading to a newer version to learn about:

• New features

- Changes
- Potential impact on your existing files and practices

Review the release notes for other MathWorks[™] products required for this product (for example, MATLAB[®] or Simulink[®]) for enhancements, bugs, and compatibility considerations that also might impact you.

If you are upgrading from a software version other than the most recent one, review the release notes for all interim versions, not just for the version you are installing. For example, when upgrading from V1.0 to V1.2, review the release notes for V1.1 and V1.2.

What's in the Release Notes

New Features and Changes

- New functionality
- Changes to existing functionality

Version Compatibility Considerations

When a new feature or change introduces a reported incompatibility between versions, the **Compatibility Considerations** subsection explains the impact.

Compatibility issues reported after the product is released appear under Bug Reports at the MathWorks Web site. Bug fixes can sometimes result in incompatibilities, so you should also review the fixed bugs in Bug Reports for any compatibility impact.

Fixed Bugs and Known Problems

The MathWorks offers a user-searchable Bug Reports database so you can view Bug Reports. The development team updates this database at release time and as more information becomes available. This includes provisions for any known workarounds or file replacements. Information is available for bugs existing in or fixed in Release 14SP2 or later. Information is not available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

Version 6.7 (R2008a) Signal Processing Blockset™ Software

This table summarizes what's new in Version 6.7 (R2008a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Yes Details below	Yes Summary	Bug Reports Includes fixes	Printable Release Notes: PDF
			Current product documentation

New features and changes introduced in this version are

- "Increased N-Dimensional Support" on page 4
- "Parameter Data Types Upgrade" on page 4
- "From Audio Device and To Audio Device Blocks Generate Code on More Platforms" on page 4
- $\bullet\,$ "FIR Interpolation Block Improved for Frame-Based Signals" on page $4\,$
- $\bullet\,$ "Delay Line Block Allows Selective Enabling of Output" on page $5\,$
- "Increased Scaled Doubles Support" on page 5
- "Spectrum Scope Allows Relabeling of X-Axis Scale" on page 5
- "Levinson-Durbin Block Coefficients Can Have Different Word Lengths" on page 5
- "Reference Port Added to Frame Conversion Block" on page 5
- "Tunability Status Changed for Stack and Queue Blocks" on page 5
- "DSP Constant Block Removed in Favor of Constant Block" on page 6
- "Matrix Concatenation Block Renamed to Matrix Concatenate" on page 6
- "New and Updated Demos" on page 6
- ullet "Obsolete Blocks" on page 7

Increased N-Dimensional Support

The following blocks now support N-D signals:

- Autocorrelation
- Convolution
- Correlation
- Delay
- Histogram
- Mean
- Median
- RMS
- Standard Deviation
- Variable Fractional Delay
- Variable Integer Delay
- Variance

Parameter Data Types Upgrade

Edit boxes on all Signal Processing BlocksetTM blocks now support all built-in MATLAB® data types except char and Boolean.

From Audio Device and To Audio Device Blocks Generate Code on More Platforms

The From Audio Device and To Audio Device blocks can now generate code on any platform supported by MATLAB except SolarisTM platforms.

FIR Interpolation Block Improved for Frame-Based Signals

The FIR Interpolation block now uses less memory and is more efficient for frame-based signals when the **Framing** parameter is set to Maintain input frame rate.

Delay Line Block Allows Selective Enabling of Output

The Delay Line block now supports selective enabling of the block output for increased efficiency when you select the **Show En_Out port for selectively enabling output** parameter. This allows the block to be more efficient in applications for which the block output does not always need to be valid.

Increased Scaled Doubles Support

The following blocks now support the scaled doubles data type:

- Discrete Impulse
- Identity Matrix
- Sine Wave
- Window Function

Spectrum Scope Allows Relabeling of X-Axis Scale

The Axis Properties pane of the Spectrum Scope block now has the **Display DC** as parameter. This parameter allows you to specify a new label for the DC frequency (0 Hz) along the *x*-axis of your scope, which is desirable in modulated carrier applications.

Levinson-Durbin Block Coefficients Can Have Different Word Lengths

The polynomial coefficients (A) and reflection coefficients (K) of the Levinson-Durbin block are no longer constrained to have the same word length.

Reference Port Added to Frame Conversion Block

The Frame Conversion block now has a Ref port that allows you to inherit the output sampling mode from an input signal.

Tunability Status Changed for Stack and Queue Blocks

The parameters of the Stack and Queue blocks are no longer tunable.

Compatibility Considerations

All parameters of the Stack and Queue blocks that were previously tunable during simulation are no longer tunable. To change these parameters while you are working with a model, you must stop a running simulation, change the parameter, and then start the simulation again.

DSP Constant Block Removed in Favor of Constant Block

The DSP Constant block has been removed. Use the Simulink® Constant block instead.

Compatibility Considerations

Use slupdate to replace DSP Constant blocks with Simulink Constant blocks in your models.

Matrix Concatenation Block Renamed to Matrix Concatenate

The Matrix Concatenation block has been renamed Matrix Concatenate. The functionality of this block has not changed.

New and Updated Demos

The following demos are new in this release. Enter the commands provided to open each demo from the MATLAB command line:

- Synthetic Aperture Radar SarImageFormation
- Positional Audio dspAudioPos
- Audio Special Effects dspaudioeffects

The following demos are updated in this release:

- Internet Low Bitrate Codec (iLBC) for VoIP dspilbc
- Pitch Shifting and Time Dilation Using a Phase Vocoder dsppitchtime
- Radar Tracking aero_radmod_dsp

• WWV Digital Receiver — dspwwv

Obsolete Blocks

The Kalman Adaptive Filter and Triggered Delay Line blocks are now obsolete.

Compatibility Considerations

Replace Kalman Adaptive Filter blocks in your models with the Kalman Filter block. Replace Triggered Delay Line blocks with a Delay Line block inside a Triggered Subsystem.

Version 6.6 (R2007b) Signal Processing Blockset™ Software

This table summarizes what's new in Version 6.6 (R2007b):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Yes Details below	Yes Summary	Bug Reports Includes fixes	Printable Release Notes: PDF
			Current product documentation

New features and changes introduced in this version are

- "New To Audio Device and From Audio Device Blocks" on page 9
- "New Array-Vector Math Blocks" on page 9
- "New CIC Filter Block" on page 9
- "FFT and IFFT Blocks Are More Optimized for Fixed-Point Signals" on page 10
- "Rounding Modes Ceiling and Zero Added to Fixed-Point Blocks" on page 10
- "Increased N-Dimensional Support" on page 10
- "Increased Scaled Doubles Support" on page 10
- "Increased Multichannel Support" on page 11
- "DirectX® Component Registration Limitations Removed from To Multimedia File and From Multimedia File Blocks" on page 11
- "Tunability Status Changed for Some Block Parameters" on page 11
- "Levinson-Durbin Block Now Treats Frame-Based Row Vectors Differently" on page 13

New To Audio Device and From Audio Device Blocks

The From Audio Device and To Audio Device blocks have been added to the Signal Processing Sources and Signal Processing Sinks libraries, respectively. These blocks offer support for more than two audio channels and for Windows[®], Macintosh[®], and Linux[®] platforms. See the block reference pages for more information.

Compatibility Considerations

These blocks replace the To Wave Device and From Wave Device blocks, which are obsolete as of this release, and might be completely removed from the product in a future release. Replace To Wave Device and From Wave Device blocks in your models with the new To Audio Device and From Audio Device blocks.

New Array-Vector Math Blocks

The following new array-vector math blocks perform arithmetic operations along a specified dimension of an N-dimensional array:

- Array-Vector Add
- Array-Vector Divide
- Array-Vector Multiply
- Array-Vector Subtract

See the block reference pages for more information.

Note The Array-Vector Multiply block replaces the Matrix Scaling block, which is removed from the product as of this release. Matrix Scaling blocks in your existing models will be automatically replaced with Array-Vector Multiply blocks.

New CIC Filter Block

The CIC Filter block has been added to the Filter Design ToolboxTM library. See the block reference page for more information.

FFT and IFFT Blocks Are More Optimized for Fixed-Point Signals

The double-signal and half-length optimizations that the FFT and IFFT blocks used to apply only to floating-point signals now also apply to fixed-point signals. See "Algorithms Used for FFT Computation" and "Algorithms Used for IFFT Computation" in the respective block reference pages for more information.

Rounding Modes Ceiling and Zero Added to Fixed-Point Blocks

The **Rounding Mode** parameter of each fixed-point-capable block has two new rounding modes:

- Ceiling rounds the result of a calculation to the closest representable number in the direction of positive infinity.
- Zero rounds the result of a calculation to the closest representable number in the direction of zero.

Increased N-Dimensional Support

The following blocks now have support for N-D signals:

- Array-Vector Add
- Array-Vector Divide
- Array-Vector Multiply
- Array-Vector Subtract
- Constant Ramp
- Difference
- Inherit Complexity
- Maximum
- Minimum

Increased Scaled Doubles Support

The following blocks now support the scaled doubles data type:

- Difference
- Normalization
- Matrix Product
- Matrix Sum

Increased Multichannel Support

The following blocks now support multichannel signals:

- LPC to LSF/LSP Conversion
- LPC to/from Cepstral Coefficients
- LPC to/from RC
- LPC/RC to Autocorrelation

DirectX[®] Component Registration Limitations Removed from To Multimedia File and From Multimedia File Blocks

You are now able to use the From Multimedia File or To Multimedia File blocks without first having someone with system administrator privileges register the DirectX[®] components associated with these blocks on your Windows machine.

Tunability Status Changed for Some Block Parameters

The tunability status for the block parameters in the following table has been changed. This was done to maintain consistency of the tunability status for any given parameter across all simulation and code generation modes.

Block	Parameter	Old Tunability Status	New Tunability Status
Chirp	Frequency sweep	Simulation only	Never
	Initial frequency	Simulation only	Always
	Target frequency	Simulation only	Always
Digital Filter	SOS matrix	Simulation only	Always
	Scale values	Simulation only	Always
Extract Triangular Matrix	Extract	Simulation only	Never
Histogram	Normalized	Simulation only	Never
Multiphase	Starting phase	Always	Never
Clock	Number of phase intervals over which clock is active	Simulation only	Never
	Active level	Always	Never
Normalization	Norm	Simulation only	Never
	Normalization bias	Simulation only	Always

Block	Parameter	Old Tunability Status	New Tunability Status
Sine Wave	Frequency	In some modes	Always when Sample mode is Continuous or Computation method is Trigonometric fcn
	Phase offset	In some modes	Always when Sample mode is Continuous or Computation method is Trigonometric fcn
Sort	Sort order	Simulation only	Never

Compatibility Considerations

Due to these changes, some parameters that were previously tunable during simulation are no longer tunable. To change these parameters while you are working with a model, you now have to stop a running simulation, change the parameter, and then start the simulation again.

Levinson-Durbin Block Now Treats Frame-Based Row Vectors Differently

The Levinson-Durbin block now treats a 1-by-N frame-based row vector on its input port as N channels with one sample each. Previously, the Levinson-Durbin block treated such an input as one channel with N samples. This change makes the Levinson-Durbin block consistent with the way most Signal Processing BlocksetTM blocks treat frame-based row vectors.

Be aware that the block now errors for a 1-by-N frame-based row vector input when reflection coefficients (K) are output, since the block is required to have at least 2 samples per input channel to calculate K.

Compatibility Considerations

To get the old behavior in an existing model, you can introduce a Frame Conversion block before a Levinson-Durbin block in your model to convert the block input to a sample-based signal.

Version 6.5 (R2007a) Signal Processing Blockset™ Software

This table summarizes what's new in Version 6.5 (R2007a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Yes	Yes	Bug Reports	No
Details below	Summary	Includes fixes	

New features and changes introduced in this version are

- "R11.1 Blocks Have Been Removed in R2007a Run Helper Script Before Upgrading" on page 15
- "New Kalman Filter Block" on page 16
- "Increased Unsigned Integer and Fixed-Point Support" on page 16
- "Increased N-Dimensional Support" on page 16
- "X-Axis Control Added to Spectrum Scope and Vector Scope Blocks" on page 17
- "New Filter Design Toolbox™ Library Blocks" on page 17
- "Fixed-Point Support and Tunability Added to Filter Design Toolbox™ Library Blocks" on page 17
- "New FFT Length Parameters on FFT and IFFT Blocks" on page 17
- "Zero Pad Block Removed" on page 18
- "Pad Block Can Truncate Either End of an Input Signal" on page 18
- "New and Updated Demos" on page 18

R11.1 Blocks Have Been Removed in R2007a — Run Helper Script Before Upgrading

The R11.1 DSP Blockset blocks have been deprecated since R14SP2. These blocks have been completely removed from the Signal Processing BlocksetTM product in R2007a.

Compatibility Considerations

We are providing a script and documentation to help you remove any R11.1 DSP Blockset blocks from your models and replace them with current Signal Processing Blockset blocks. You must run this script *before* upgrading to R2007a. Refer to our MATLAB® Central submission titled "Tool for Removing R11 DSP Blockset Blocks from Models" on the Web to download the script and its associated documentation.

New Kalman Filter Block

The Kalman Filter block has been added to the Filtering > Adaptive Filters library. This block predicts or estimates the state of a dynamic system from a series of incomplete or noisy measurements. See the block reference page for more information.

Increased Unsigned Integer and Fixed-Point Support

Unsigned integer and fixed-point data type support has been added to the following blocks:

- Cumulative Product
- Cumulative Sum
- Difference
- FIR Decimation
- FIR Interpolation
- FIR Rate Conversion

Increased N-Dimensional Support

Support for N-D signals has been added to the following blocks:

- dB Conversion
- dB Gain
- Check Signal Attributes
- Frame Conversion
- Normalization

Pad

X-Axis Control Added to Spectrum Scope and Vector Scope Blocks

More *x*-axis control has been added to the Spectrum Scope and Vector Scope blocks:

- You can now specify the range of the *x*-axis for the Spectrum Scope and Vector Scope blocks.
- You can now specify an *x*-offset for the Vector Scope block.

See the block reference pages for more information.

New Filter Design Toolbox™ Library Blocks

The following blocks have been added to the Filter Design Toolbox™ library:

- Arbitrary Magnitude Filter
- Octave Filter
- Parametric Equalizer
- Peak-Notch Filter

See the block reference pages for more information.

Fixed-Point Support and Tunability Added to Filter Design Toolbox™ Library Blocks

The blocks in the Filter Design Toolbox library now support fixed-point and integer data types on their input and output ports. In addition, parameters of these blocks that do not change filter order or structure are now tunable.

New FFT Length Parameters on FFT and IFFT Blocks

The Inherit FFT length from input dimensions and FFT length parameters have been added to the FFT and IFFT blocks. See the block reference pages for more information.

Zero Pad Block Removed

The Zero Pad block has been removed from the Signal Processing Blockset product.

Compatibility Considerations

You can use the Pad block with the **Pad value** parameter set to 0 to exactly replicate the functionality of the Zero Pad block. Any Zero Pad blocks in existing models will be automatically replaced by Pad blocks with the **Pad value** parameter set to 0. Your models will continue to work correctly.

Pad Block Can Truncate Either End of an Input Signal

You can use the Pad block to truncate a signal by specifying an output length that is shorter than the input length in a given dimension. In previous releases, the block ignored the value of the **Pad signal at** parameter and always truncated the end of a signal.

Compatibility Considerations

The Pad block now obeys the **Pad signal at** parameter for truncation as well as for padding, enabling you to truncate a signal at its beginning, end, or both. To get the previous behavior, make sure that the **Pad signal at** parameter is set to End for any Pad blocks in your model that are truncating the input signal.

New and Updated Demos

The Vorbis Decoder demo has been added to the Audio Processing library. This demo implements the Vorbis decoder, which is a freeware, open-source alternative to the MP3 standard. This audio decoding standard supports the segmentation of encoded data into small packets for network transmission. Open this demo by typing dspvorbisdec.

The Internet Low Bit-Rate Codec (iLBC) demo in the Audio Processing library has been improved. This demo now supports single-precision floating-point data, and both builds and runs faster. Open this demo by typing dspilbc.

Version 6.4 (R2006b) Signal Processing Blockset™ Software

This table summarizes what's new in Version 6.4 (R2006b):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Yes	Yes	Bug Reports	No
Details below	Summary	Includes fixes	

New features and changes introduced in this version are

- "R11.1 Blocks Will Be Removed in R2007a" on page 19
- "New Filter Design ToolboxTM Block Library" on page 20
- "More Blocks with Fixed-Point Support" on page 20
- "From Multimedia File Block Supports Uncompressed AVI Files on UNIX®" on page 21
- "To Wave File and From Wave File Blocks Extended to Support More than Two Channels" on page 21
- "Enabled Subsystem Support for From Wave File Block" on page 21
- "Diagnostic Output Port Added to Report a Failure to Converge" on page 21
- "2-D Support Added" on page 22
- $\bullet\,$ "Multichannel Support Added" on page $22\,$
- "Blocks Removed from Product" on page 22

R11.1 Blocks Will Be Removed in R2007a

The R11.1 Signal Processing BlocksetTM blocks have been deprecated since R14SP2. In the next release, R2007a, these blocks will be completely removed from the product.

Compatibility Considerations

We strongly recommend that you replace any R11.1 blocks that you are using in your models at this time. For more information, refer to "Obsolete Blocks" on page 30.

New Filter Design Toolbox™ Block Library

A new Filter Design ToolboxTM block library has been added for the design and implementation of single- and multirate FIR and IIR filters. The library contains the following blocks:

- Bandpass Filter
- Bandstop Filter
- CIC Compensator
- Differentiator Filter
- Fractional Delay Filter
- Halfband Filter
- Highpass Filter
- Hilbert Filter
- Inverse Sinc Filter
- Lowpass Filter
- Nyquist Filter

More Blocks with Fixed-Point Support

Support for fixed-point data types has been added to the following blocks:

- Backward Substitution
- Forward Substitution
- LDL Factorization
- LU Factorization

From Multimedia File Block Supports Uncompressed AVI Files on UNIX®

The From Multimedia File block now supports uncompressed AVI files on UNIX® platforms. As a result, you no longer need to use separate blocks to import multimedia files if you are working on both Windows® and UNIX platforms.

To Wave File and From Wave File Blocks Extended to Support More than Two Channels

The To Wave File and From Wave File blocks now support an arbitrary number of audio channels, instead of just mono and stereo.

Enabled Subsystem Support for From Wave File Block

The From Wave File block now supports enabled subsystems.

Diagnostic Output Port Added to Report a Failure to Converge

A new diagnostic output port has been added to the following blocks to report a failure to converge:

- Pseudoinverse
- Singular Value Decomposition
- SVD Solver

To make this port appear, select the **Show error status port** check box on the block dialog.

Compatibility Considerations

In prior releases, these blocks returned an error when the computation failed to converge. This error no longer occurs. Instead, select the **Show error status port** check box on the block dialog to make the error port E appear. You can then connect this port to a block such as the Simulink[®] Assertion block to receive information about the convergence of the output.

2-D Support Added

2-D support has been added to the following blocks:

- Matrix Product
- Matrix Sum
- Maximum
- Minimum

Multichannel Support Added

Multichannel support has been added to the following blocks:

- Autocorrelation LPC
- Levinson-Durbin
- LSF/LSP to LPC Conversion
- Yule-Walker AR Estimator
- Zero Crossing

Blocks Removed from Product

The DSP Gain, DSP Sum, DSP Product, and DSP Fixed-Point Attributes blocks have been removed from the Signal Processing Blockset product.

Compatibility Considerations

You can replace any DSP Gain, DSP Sum, and DSP Product blocks in your models with Simulink Gain, Sum, and Product blocks, respectively. There is no replacement for the DSP Fixed-Point Attributes block.

Version 6.3 (R2006a) Signal Processing Blockset™ Software

This table summarizes what's new in Version 6.3 (R2006a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Yes Details below	No	Bug Reports Includes fixes	No

New features and changes introduced in this version are

- "Integration of Filter Blocks with Signal Processing Toolbox™ Filter Objects and FVTool" on page 23
- "Transposed Direct Form Structure Added to FIR Decimation Block" on page 24
- "Data Type Specification Modes Added to CIC Decimation and CIC Interpolation Blocks" on page 24
- "Taylor Window Type Added to Window Function Block" on page 25
- "Reduced Simulation Memory Footprint for Fixed-Point Capable Blocks" on page 25
- "Improved Usability for the To Wave Device Block" on page 25
- "New Demos" on page 25

Integration of Filter Blocks with Signal Processing Toolbox™ Filter Objects and FVTool

Significant enhancements were made to the following filter blocks for this release:

- CIC Decimation
- CIC Interpolation
- FIR Decimation

- FIR Interpolation
- FIR Rate Conversion

The changes made to these blocks bring them into closer alignment with the Signal Processing ToolboxTM product:

- These filter blocks can now operate in two different modes, which you select
 in the Coefficient source group box. If you select Dialog parameters,
 you enter information about the filter in the block mask. If you select
 Multirate filter object (MFILT), you can now specify the filter using a
 mfilt object from the Signal Processing Toolbox product.
- You can now open the Signal Processing Toolbox fvtool from the block masks to view the filter response.

A few minor changes have also been made to the Digital Filter block mask to bring it into closer alignment with these blocks and with the Signal Processing Toolbox product. However, most of the updates to this block for this improvement were made in the previous release. See "Digital Filter Block Enhancements" on page 27.

Transposed Direct Form Structure Added to FIR Decimation Block

You can now implement either a transposed direct form or a direct form structure with the FIR Decimation block using the **Filter structure** parameter.

The addition of the transposed direct form structure to this block brings it into closer alignment to the Signal Processing Toolbox mfilt.firdecim object.

Data Type Specification Modes Added to CIC Decimation and CIC Interpolation Blocks

The **Data type specification mode** parameter has been added to the CIC Decimation and CIC Interpolation blocks. This parameter allows you to choose how the word and fraction lengths are specified for the filter sections and outputs. You can choose to fully specify the word and fraction lengths of

the filter sections and outputs yourself, or have one or more of these quantities automatically selected for you.

This feature brings these blocks into closer alignment with the Signal Processing Toolbox mfilt.cicdecim and mfilt.cicinterp objects.

Taylor Window Type Added to Window Function Block

The Taylor window type has been added to the Window Function block. The block functionality in this mode is identical to that of the Signal Processing Toolbox taylorwin function.

Reduced Simulation Memory Footprint for Fixed-Point Capable Blocks

Fixed-point capable Signal Processing BlocksetTM blocks now use less memory as they simulate. There is no change to the memory requirements for the generated code from these blocks.

Improved Usability for the To Wave Device Block

The usability of the To Wave Device block has been improved with the addition of the **Automatically determine internal buffer size** and **User-defined internal buffer size** parameters. These parameters allow you to define the size of the chunks of data that are written to the hardware audio device by the block, independently of the input dimensions. The block reference page in the documentation also has significant updates, including a "Troubleshooting" section. Refer to the reference page for more information.

New Demos

Demo Name	Signal Processing Demo Library Location	Launch Command
DTMF Generator and Receiver	Communications	dspdtmf

Demo Name	Signal Processing Demo Library Location	Launch Command
Envelope Detection	Miscellaneous	dspenvdet
Internet Low Bitrate Codec (iLBC)	Audio Processing	dspilbc

Version 6.2 (R14SP3) Signal Processing Blockset™ Software

This table summarizes what's new in Version 6.2 (R14SP3):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Yes Details below	No	Bug Reports Includes fixes	No

New features and changes introduced in this version are

- "New Numerically Controlled Oscillator (NCO) Block" on page 27
- "Digital Filter Block Enhancements" on page 27
- "Fixed-Point Support Added to the Matrix Multiply Block" on page 28
- "Simulink® Virtual Bus Support Added to Key Blocks" on page 28
- "New Audio Sample Rate Conversion Demo" on page 28

New Numerically Controlled Oscillator (NCO) Block

The NCO block in the Signal Operations library is new for this release.

Digital Filter Block Enhancements

Significant enhancements were made to the Digital Filter block for this release:

- Digital Filter can now operate in two different modes, which you select in the Filter source group box. If you select Specify filter characteristics in dialog, you enter information about the filter in the block mask as in previous releases. If you select Specify discrete-time filter object (DFILT), you can now specify the filter using a dfilt object from the Signal Processing Toolbox™ product.
- You can now open the Signal Processing Toolbox fvtool from the Digital Filter block mask to view the filter response.

Fixed-Point Support Added to the Matrix Multiply Block

The Matrix Multiply block now has functionality identical to the Simulink® Product block. The block now supports Boolean, integer, and fixed-point data types.

Simulink® Virtual Bus Support Added to Key Blocks

Simulink® virtual bus support has been added to the following blocks:

- DCT
- Delay
- Flip
- Overwrite Values
- Submatrix
- Transpose

For more information on virtual buses, refer to "Using Buses" in the Using Simulink documentation.

New Audio Sample Rate Conversion Demo

The new Audio Sample Rate Conversion demo illustrates audio sample rate conversion of a 48 kHz (DAT sampling rate) input audio signal to a 44.1 kHz (CD sampling rate) output audio signal using a multistage multirate FIR rate conversion approach. You can access this demo from the **Demos** pane of the Help browser under **Blocksets** > **Signal Processing** > **Audio Processing**.

Version 6.1 (R14SP2) Signal Processing Blockset™ Software

This table summarizes what's new in Version 6.1 (R14SP2):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Yes Details below	Yes—Details labeled as Compatibility Considerations, below. See also Summary.	Bug Reports Includes fixes	No

New features and changes introduced in this version are

- "Broader Support for the Logging of Simulation Minimums and Maximums and Fixed-Point Autoscaling" on page 29
- "Fixed-Point Support for the DCT and IDCT Blocks" on page 29
- "New Audio File Source and Sink Blocks" on page 30
- "Multirate Support for CIC Filter Blocks" on page 30
- "Obsolete Blocks" on page 30

Broader Support for the Logging of Simulation Minimums and Maximums and Fixed-Point Autoscaling

An increased number of fixed-point capable Signal Processing Blockset™ blocks now support the logging of simulation minimums and maximums and autoscaling via the Fixed-Point Settings interface.

Fixed-Point Support for the DCT and IDCT Blocks

The DCT and IDCT blocks now support fixed-point data types.

New Audio File Source and Sink Blocks

The From Multimedia File and To Multimedia File blocks in the Platform Specific I/O > Windows® (WIN32) library are new in this release.

Multirate Support for CIC Filter Blocks

The CIC Decimation and CIC Interpolation blocks now support multirate sample-based processing.

Obsolete Blocks

The blocks in the table below are obsolete, although they are currently still shipped with the product, and may be removed in a future version of the Signal Processing Blockset product. We recommend that you use the replacement blocks listed in the third column.

Compatibility Considerations

You can run the Signal Processing Blockset function dsp_links to see if you are using any obsolete blocks in your models. If your models are using obsolete blocks, we strongly recommend that you exchange them for blocks that are currently supported.

To access each replacement block, type the library name listed in the **Replacement Block(s) Library** column at the MATLAB^{®®} command line.

Obsolete (R11.1) Block	Obsolete Block Library	Replacement Block(s)	Replacement Block(s) Library
Analog Filter Design	dspddes2	Analog Filter Design	dsparch4
Analytic Signal	dspbdsp2	Analytic Signal	dspxfrm3
Autocorrelation	dspvect2	Autocorrelation	dspstat3
Backward Substitution	dsplinalg	Backward Substitution	dspsolvers
Biquadratic Filter	dsparch2	Digital Filter	dsparch4
Buffer	dspbuff2	Buffer	dspbuff3

Obsolete (R11.1) Block	Obsolete Block Library	Replacement Block(s)	Replacement Block(s) Library
Buffered FFT Frame Scope	dspsnks2	Spectrum Scope	dspsnks4
Burg AR Estimator	dspparest2	Burg AR Estimator	dspparest3
Burg Method	dspspect2	Burg Method	dspspect3
Chirp	dspsrcs2	Chirp	dspsrcs4
Cholesky Factorization	dsplinalg	Cholesky Factorization	dspfactors
Cholesky Solver	dsplinalg	Cholesky Solver	dspsolvers
Commutator	dspswit2	Reshape > Frame Conversion > Unbuffer	Simulink® block, dspsigattribs, dspbuff3
Complex Cepstrum	dspxfrm2	Complex Cepstrum	dspxfrm3
Complex Exponential	dspelem2	Complex Exponential	dspmathops
Constant Diagonal Matrix	dspmtrx2	Constant Diagonal Matrix	dspmtrx3
Contiguous Copy	dspelem2	Contiguous Copy	dspobslib
Convert Complex DSP to Simulink	dspelem2	No Direct Replacement	N/A
Convert Complex Simulink to DSP	dspelem2	No Direct Replacement	N/A
Convolution	dspvect2	Convolution	dspsigops
Correlation	dspvect2	Correlation	dspstat3
Covariance AR Estimator	dspparest2	Covariance AR Estimator	dapparest3
Covariance Method	dspspect2	Covariance Method	dspspect3
Create Diagonal Matrix	dspmtrx2	Create Diagonal Matrix	dspmtrx3
Cumulative Sum	dspvect2	Cumulative Sum	dspmathops

Obsolete (R11.1) Block	Obsolete Block Library	Replacement Block(s)	Replacement Block(s) Library
Counter	dspswit2	Counter	dspswit3
dB	dspelem2	dB Conversion	dspmathops
dB Gain	dspelem2	dB Gain	dspmathops
DCT	dspxfrm2	DCT	dspxfrm3
Detrend	dspbdsp2	Detrend	dspstat3
Difference	dspvect2	Difference	dspmathops
Digital FIR Filter Design	dspddes2	Digital Filter Design	dsparch4
Digital FIR Raised Cosine Filter Design	dspddes2	Digital Filter Design	dsparch4
Digital IIR Filter Design	dspddes2	Digital Filter Design	dsparch4
Direct-Form II Transpose Filter	dsparch2	Digital Filter	dsparch4
Discrete Constant	dspsrcs2	DSP Constant	dspsrcs4
Discrete Impulse	dspsrcs2	Discrete Impulse	dspsrcs4
Distributor	dspswit2	Buffer	dspbuff3
Downsample	dspbdsp2	Downsample	dspsigops
Dyadic Analysis Filter Bank	dspmlti2	Dyadic Analysis Filter Bank	dspmlti4
Dyadic Synthesis Filter Bank	dspmlti2	Dyadic Synthesis Filter Bank	dspmlti4
Edge Detector	dspswit2	Edge Detector	dspswit3
Event-Count Comparator	dspswit2	Event-Count Comparator	dspswit3
Extract Diagonal	dspmtrx2	Extract Diagonal	dspmtrx3
Extract Triangular Matrix	dspmtrx2	Extract Triangular Matrix	dspmtrx3

Obsolete (R11.1) Block	Obsolete Block Library	Replacement Block(s)	Replacement Block(s) Library
FFT	dspxfrm2	FFT	dspxfrm3
FFT Frame Scope	dspsnks2	Spectrum Scope	dspsnks4
Filter Realization Wizard	dsparch2	Filter Realization Wizard	daparch4
FIR Decimation	dspmlti2	FIR Decimation	dspmlti4
FIR Interpolation	dspmlti2	FIR Interpolation	dspmlti4
FIR Rate Conversion	dspmlti2	FIR Rate Conversion	dspmlti4
Flip	dspvect2	Flip	dspindex
Forward Substitution	dsplinalg	Forward Substitution	dspsolvers
Frequency Frame Scope	dspsnks2	Vector Scope	dspsnks4
From Wave Device	dspsrcs2	From Wave Device	dspwin32
From Wave File	dspsrcs2	From Wave File	dspwin32
Histogram	dspstat2	Histogram	dspstat3
IDCT	dspxfrm2	IDCT	dspxfrm3
IFFT	dspxfrm2	IFFT	dspxfrm3
Inherit Complexity	dspelem2	Inherit Complexity	dspsigattribs
Integer Delay	dspbdsp2	Delay	dspsigops
Kalman Adaptive Filter	dspadpt2	Kalman Adaptive Filter	dspadpt3
LDL Factorization	dsplinalg	LDL Factorization	dspfactors
LDL Solver	dsplinalg	LDL Solver	dspsolvers
Least Squares FIR Filter Design	dspddes2	Digital Filter Design	dsparch4
Levinson Solver	dsplinalg	Levinson-Durbin	dspsolvers
LMS Adaptive Filter	dspadpt2	LMS Filter	dspadpt3
LPC	dspbdsp2	Autocorrelation LPC	dsplp

Obsolete (R11.1) Block	Obsolete Block Library	Replacement Block(s)	Replacement Block(s) Library
LU Factorization	dsplinalg	LU Factorization	dspfactors
LU Solver	dsplinalg	LU Solver	dspsolvers
Magnitude FFT	dspspect2	Magnitude FFT	dspspect3
Matrix 1-Norm	dspmtrx2	Matrix 1-Norm	dspmtrx3
Matrix Constant	dspmtrx2	Constant	Simulink block
Matrix From Workspace	dspmtrx2	Signal From Workspace	dspsrcs4
Matrix Multiplication	dspmtrx2	Matrix Multiply	dspmtrx3
Matrix Product	dspmtrx2	Matrix Product	dspmtrx3
Matrix Scaling	dspmtrx2	Matrix Scaling	dspmtrx3
Matrix Square	dspmtrx2	Matrix Square	dspmtrx3
Matrix Sum	dspmtrx2	Matrix Sum	dspmtrx3
Matrix To Workspace	dspmtrx2	To Workspace	Simulink block
Matrix Viewer	dspsnks2	Matrix Viewer	dspsnks4
Maximum	dspstat2	Maximum	dspstat3
Mean	dspstat2	Mean	dspstat3
Median	dspstat2	Median	dspstat3
Minimum	dspstat2	Minimum	dspstat3
Modified Covariance AR Estimator	dspparest2	Modified Covariance AR Estimator	dspparest3
Modified Covariance Method	dspspect2	Modified Covariance Method	dspspect3
Multiphase Clock	dspswit2	Multiphase Clock	dspswit3
Normalization	dspvect2	Normalization	dspmathops
N-Sample Enable	dspswit2	N-Sample Enable	dspswit3
N-Sample Switch	dspswit2	N-Sample Switch	dspswit3

Obsolete (R11.1) Block	Obsolete Block Library	Replacement Block(s)	Replacement Block(s) Library
Overlap-Add FFT Filter	dsparch2	Overlap-Add FFT Filter	dsparch4
Overlap-Save FFT Filter	dsparch2	Overlap-Save FFT Filter	dsparch4
Partial Unbuffer	dspbuff2	Submatrix > Unbuffer	dspmtrx3, dspbuff3
Permute Matrix	dspmtrx2	Permute Matrix	dspmtrx3
Polynomial Evaluation	dspelem2	Polynomial Evaluation	dsppolyfun
Queue	dspbuff2	Queue	dspbuff3
QR Factorization	dsplinalg	QR Factorization	dspfactors
QR Solver	dsplinalg	QR Solver	dspsolvers
Random Source	dspsrcs2	Random Source	dspsrcs4
Repeat	dspbdsp2	Repeat	dspsigops
Real Cepstrum	dspxfrm2	Real Cepstrum	dspxfrm3
Rebuffer	dspbuff2	Buffer	dspbuff3
Reciprocal Condition	dsplinalg	Reciprocal Condition	dspmtrx3
Remez FIR Filter Design	dspddes2	Digital Filter Design	dsparch4
Reshape	dspmtrx2	Reshape	Simulink block
RLS Adaptive Filter	dspadpt2	RLS Filter	dspadpt3
RMS	dspstat2	RMS	dspstat3
Shift Register	dspbuff2	Delay Line	dspbuff3
Sample and Hold	dspswit2	Sample and Hold	dspsigops
Short-Time FFT	dspspect2	Periodogram	dspspect3
Signal From Workspace	dspsrcs2	Signal From Workspace	dspsrcs4
Signal To Workspace	dspsnks2	Signal To Workspace	dspsnks4

Obsolete (R11.1) Block	Obsolete Block Library	Replacement Block(s)	Replacement Block(s) Library
Sine Wave	dspsrcs2	Sine Wave	dspsrcs4
Sort	dspstat2	Sort	dspstat3
Stack	dspbuff2	Stack	dspbuff3
Standard Deviation	dspstat2	Standard Deviation	dspstat3
Submatrix	dspmtrx2	Submatrix	dspmtrx3
Time Frame Scope	dspsnks2	Vector Scope	dspsnks4
Time-Varying Direct-Form II Transpose Filter	dsparch2	Digital Filter	dsparch4
Time-Varying Lattice Filter	dsparch2	Digital Filter	dsparch4
Toeplitz	dspmtrx2	Toeplitz	dspmtrx3
To Wave Device	dspsnks2	To Wave Device	dspwin32
To Wave File	dspsnks2	To Wave File	dspwin32
Transpose	dspmtrx2	Transpose	dspmtrx3
Triggered Matrix To Workspace	dspsnks2	Triggered To Workspace	dspsnks4
Triggered Shift Register	dspbuff2	Triggered Delay Line	dspbuff3
Triggered Signal From Workspace	dspbdsp2	Triggered Signal From Workspace	dspsigops
Triggered Signal To Workspace	dspsnks2	Triggered To Workspace	dspsnks4
Unbuffer	dspbuff2	Unbuffer	dspbuff3
Uniform Decoder	dspquant	Uniform Decoder	dspquant2
Uniform Encoder	dspquant	Uniform Encoder	dspquant2
Unwrap	dspvect2	Unwrap	dspsigops
Upsample	dspbdsp2	Upsample	dspsigops

Obsolete (R11.1) Block	Obsolete Block Library	Replacement Block(s)	Replacement Block(s) Library
User-defined Frame Scope	dspsnks2	Vector Scope	dspsnks4
Variable Fractional Delay	dspbdsp2	Variable Fractional Delay	dspsigops
Variable Integer Delay	dspbdsp2	Variable Integer Delay	dspsigops
Variable Selector	dspelem2	Variable Selector	dspindex
Variance	dspstat2	Variance	dapstat3
Wavelet Analysis	dspmlti2	Wavelet Analysis	dspobslib
Wavelet Synthesis	dspmlti2	Wavelet Synthesis	dspobslib
Window Function	dspbdsp2	Window Function	dspsigops
Yule-Walker AR Estimator	dspparest2	Yule-Walker AR Estimator	dspparest3
Yule-Walker IIR Filter Design	dspddes2	Digital Filter Design	dsparch4
Yule-Walker Method	dspspect2	Yule-Walker Method	dspspect3

Version 6.0.1 (R14SP1) Signal Processing Blockset™ Software

This table summarizes what's new in Version 6.0.1 (R14SP1):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Yes Details below	No	Fixed bugs	No

New features and changes introduced in this version are

- "Changes from the Previous Release" on page 38
- "New Demos" on page 39
- "Enhanced Blocks" on page 39

Changes from the Previous Release

In this release, the following blocks have been affected by changes in the behavior of source block dialog boxes and the Model Explorer. See the "Changed Source Dialog Box Behavior" section in the Simulink® Release Notes.

- Chirp
- Constant Diagonal Matrix
- DSP Constant
- Multiphase Clock
- N-Sample Enable
- Random Source
- Sine Wave

New Demos

Demo Name	Signal Processing Demo Library Location	Launch Command
Cochlear implant speech processor	Audio Processing	dspcochlear_all (Platform independent)
		dspcochlear_all_fixpt (Platform independent, fixed-point version)
Creating sample-based signals	Working with Signals	dspcreatesbsigs
Creating frame-based signals	Working with Signals	dspcreatefbsigs
Creating multichannel signals	Working with Signals	dspcreatemltichansigs
Splitting and reordering multichannel signals	Working with Signals	dspsplitreordmltichansigs
Importing signals	Working with Signals	dspimportsigs
Exporting signals	Working with Signals	dspexportsigs

Enhanced Blocks

The following blocks have been enhanced for Release 14SP1:

- Sample and Hold
- Spectrum Scope

The Sample and Hold block has a new parameter, the **Latch** (**buffer**) **input** check box. If you select this check box, the block outputs the value of the input from the previous time step until the next triggering event occurs. This parameter enables this block to be used in a feedback loop.

The Spectrum Scope block has two new parameters, **Window type** and **Window sampling**. Use the **Window type** parameter to specify which window to apply to the input. Use the **Window sampling** parameter to specify whether the window samples are computed in a periodic or a symmetric manner.

Version 6.0 (R14) Signal Processing Blockset™ Software

This table summarizes what's new in Version 6.0 (R14):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Yes Details below	Yes—Details labeled as Compatibility Considerations, below. See also Summary.	Fixed bugs	No

New features and changes introduced in this version are

- "Product Name Change" on page 41
- "Additional Fixed-Point Support" on page 41
- "New Blocks" on page 43
- "Enhanced Blocks" on page 45
- "Renamed Blocks" on page 46
- "New Demos" on page 47
- "Triggered Subsystem Support" on page 47
- "Constant Sample Time Support" on page 48
- "Source Blocks Obey New Simulink® Inherited Sample Time Parameter" on page 48
- "Signal & Scope Manager Support" on page 48
- "Multitasking Support" on page 49
- "Multirate Models" on page 49
- "Scalar Quantizer Block Obsoleted" on page 49
- "Obsolete Product Versions" on page 50

Product Name Change

DSP Blockset has been renamed. The new name is Signal Processing Blockset TM .

Additional Fixed-Point Support

For this release, significant support for fixed-point development has been added to the Signal Processing Blockset product.

New Fixed-Point Blocks

The following new blocks support fixed-point data types:

- CIC Decimation
- CIC Interpolation
- Offset
- Peak Finder
- Scalar Quantizer Decoder
- Scalar Quantizer Encoder
- Vector Quantizer Decoder
- Vector Quantizer Encoder
- Zero Crossing

Blocks with Added Fixed-Point Support

The following blocks now support fixed-point data types:

- Constant Ramp
- Cumulative Product
- Cumulative Sum
- Difference
- Digital Filter more structures now support fixed-point data types
- FIR Rate Conversion

- Histogram
- Levinson-Durbin
- LMS Filter
- Matrix 1-Norm
- Matrix Scaling
- Mean
- Median
- Normalization
- Short-Time FFT
- Signal From Workspace
- Signal To Workspace
- Sort
- Triggered Signal From Workspace
- Triggered To Workspace
- Toeplitz
- Two-Channel Analysis Subband Filter
- Two-Channel Synthesis Subband Filter

Fixed-Point Blocks with New Complex Support

The following blocks supported real fixed-point data types in the last major release. They now also support complex fixed-point data types:

- Autocorrelation
- Convolution
- Correlation
- FIR Decimation
- FIR Interpolation
- Sort

Fixed-Point Blocks with a New Interface

Many of the Signal Processing Blockset blocks that support fixed-point data types have a new, easier-to-use interface. For more information, see Setting Block Parameters in the Signal Processing Blockset User's Guide.

New Automatic Selection of Fixed-Point Word and Fraction Lengths

Many fixed-point capable Signal Processing Blockset blocks allow you to set intermediate data types via block mask parameters. The **Accumulator**, **Product output**, and **Output** parameters on many such blocks have a new Inherit via internal rule setting. When you select Inherit via internal rule, the accumulator, product output, or block output word and fraction lengths will be automatically calculated for you. In general, all the bits are preserved in the internal block algorithm for quantities using this selection. That is, the accumulator, product output, or block output word and fraction lengths are selected such that

- No overflow occurs
- No precision loss occurs

Internal rule equations specific to each block are given in the block reference pages.

New Logging of Simulation Minimums and Maximums and Autoscaling

A number of fixed-point capable Signal Processing Blockset blocks now support the logging of simulation minimums and maximums and autoscaling via the Fixed-Point Settings interface.

New Blocks

This section gives a brief description of each of the new blocks.

CIC Decimation and CIC Interpolation

The CIC Decimation and CIC Interpolation blocks are in the Filtering/ Multirate Filters library. These blocks decimate or interpolate a signal using a Cascaded Integrator-Comb filter.

G711 Codec

The G711 Codec block is in the Quantizers library. This block encodes a linear, pulse code modulation (PCM) narrowband speech signal using an A-law or mu-law encoder. The block decodes index values into quantized output values using an A-law or mu-law decoder. The block converts between A-law and mu-law index values.

Inverse Short-Time FFT

The Inverse Short-Time FFT block is in the Transforms library. This block recovers the time-domain signal by performing an inverse short-time, fast Fourier transform operation.

LPC to/from Cepstral Coefficients

The LPC to/from Cepstral Coefficients block is in the Linear Prediction library. This block converts linear prediction coefficients (LPCs) to cepstral coefficients (CCs) or cepstral coefficients to linear prediction coefficients.

Offset

The Offset block is in the Signal Operations library. This block truncates vectors by removing or keeping beginning or ending values.

Peak Finder

The Peak Finder block is in the Signal Operations library. This block finds the local maxima and/or minima of an input signal.

Scalar Quantizer Decoder

The Scalar Quantizer Decoder block is in the Quantizers library. This block converts each index value into a quantized output value.

Scalar Quantizer Encoder

The Scalar Quantizer Encoder block is in the Quantizers library. This block encodes each input value by associating it with the index value of a quantization region.

Short-Time FFT

The Short-Time FFT block is in the Transforms library. This block computes a nonparametric estimate of the spectrum using the short-time, fast Fourier transform method. The Short-Time FFT block that was located in the Power Spectrum Estimation library has been renamed the Periodogram block.

Vector Quantizer Decoder

The Vector Quantizer Decoder block is in the Quantizers library. This block finds the vector quantizer codeword that corresponds to a given, zero-based index value.

Vector Quantizer Design

The Vector Quantizer Design block is in the Quantizers library. This block designs a vector quantizer using the Vector Quantizer Design Tool (VQDTool).

Vector Quantizer Encoder

The Vector Quantizer Encoder block is in the Quantizers library. This block finds the index of the nearest codeword based on a Euclidean or weighted Euclidean distance measure.

Waterfall

The Waterfall block is in the DSP Sinks library. This block enables you to view vectors of data over time.

Zero Crossing

The Zero Crossing block is in the Signal Operations library. This block counts the number of times a signal crosses zero.

Enhanced Blocks

This section gives a brief description of each of the block enhancements.

Counter

The **Count data type** parameter of the Counter block now supports signed and unsigned integers.

Digital Filter

The Digital Filter block now supports these additional filter structures:

- FIR
 - Direct form symmetric
 - Direct form antisymmetric
- IIR Biquad (SOS)
 - Direct form I
 - Direct form I transposed
 - Direct form II

Every filter structure now supports fixed-point data types.

Biquad (SOS) filter structures support interstage floating-point and fixed-point scale values.

Matrix Viewer

The Matrix Viewer block parameters dialog box has been upgraded.

Scalar Quantizer Design

You can now use the Scalar Quantizer Design Tool to create Scalar Quantizer Encoder and Scalar Quantizer Decoder blocks inside your models.

Sort

The Sort block now supports an additional sorting algorithm. Now, for the **Sort algorithm** parameter, you can choose either Quick sort or Insertion sort. Previously, only the quick sort algorithm was supported.

Renamed Blocks

Periodogram

The Short-Time FFT block that was located in the Power Spectrum Estimation library has been renamed the Periodogram block. This block computes a

nonparametric estimate of the spectrum. All instances of the old Short-Time FFT block have been replaced by the Periodogram block.

New Demos

Demo Name	Signal Processing Demo Library Location	Launch Command
Adaptive filter convergence	Adaptive Processing	lmsxyplot
CELP speech coder	Audio Processing	dspcelpcoder
G711 A-law and A-Mu-A conversion	Audio Processing	dspg711amua
G711 Mu-law and Mu-A-Mu conversion	Audio Processing	dspg711muamu
G711 and PCM encoding	Audio Processing	dspg711cmp
Phase vocoder	Audio Processing	dsppitchtime
Plucked string	Audio Processing	dsppluck
Radar tracking demonstration	Aerospace	aero_radmod_dsp
Short-Time Spectral Attenuation	Spectral Analysis	dspstsa
Vector quantizer design	Miscellaneous	dspvqtwodim

The Short-Time FFT demo in Spectral Analysis demo library is now the Periodogram demo.

The Acoustic Noise Canceler demo (dspanc) is now supported on all platforms. It also has a fixed-point version (dspanc fixpt).

The Signal Processing Blockset product has a new demo library called Fixed-Point. This library contains demo models that support fixed-point data types.

Triggered Subsystem Support

Signal Processing Blockset blocks now support triggered subsystems. The exceptions are

- Chirp
- Multiphase Clock
- · Sine Wave
- Blocks with multiple sample times

Constant Sample Time Support

The Signal Processing Blockset product has extended support of constant sample times to its blocks. The output of blocks with constant sample times does not change during the simulation. You can remove all blocks having constant sample times from the simulation "loop" by setting the **Inline parameters** option. If you select the **Inline parameters** check box on the **Optimization** pane of the Configuration Parameters dialog box, the parameters of these blocks cannot be changed during a simulation, and simulation speed is improved.

Source Blocks Obey New Simulink® Inherited Sample Time Parameter

Signal Processing Blockset source blocks capable of inheriting their sample time obey a new Simulink® inherited sample time parameter. To view this parameter, open the Configuration Parameters dialog box. In the **Select** pane, expand **Diagnostics** and click **Sample Time**. The new parameter, **Source block specifies -1 sample time** appears in the left pane. This parameter can be set to none, warning (default), or error.

The Random Source block is the only block that does not obey this parameter. If its **Sample time** parameter is set to -1, the Random Source block inherits its sample time from its output port and never produces warnings or errors.

Signal & Scope Manager Support

You can use the Signal & Scope Manager to create and view signals without using blocks. The Signal Processing Blockset product provides signal generators and viewers that you can associate with your model using the Signal & Scope Manager. To view these generators and viewers, right-click in your model, and select **Signal & Scope Manager**. From the **Generators** and **Viewers** lists, expand **Signal Processing**.

For information on how to use the Signal & Scope Manager, see "Introducing the Signal and Scope Manager" in the Simulink documentation.

Multitasking Support

If you have a multirate model that you want to run in MultiTasking mode and your model contains any of the blocks listed below, your reset event can be delayed as much as one reset time interval so your model behaves deterministically:

- Minimum
- Maximum
- Mean
- Standard Deviation
- Variance
- RMS
- Cumulative Sum
- Cumulative Product
- Delay

To minimize delay in multirate models, run them in SingleTasking mode.

Multirate Models

The following blocks no longer support different sample rates at their input ports:

- Permute Matrix
- Variable Selector
- Variable Integer Delay

Scalar Quantizer Block Obsoleted

The Scalar Quantizer block has been replaced by the Scalar Quantizer Encoder and Scalar Quantizer Decoder blocks.

Obsolete Product Versions

As of Version 6.0 (Release 14) of the Signal Processing Blockset product, DSP Blockset Versions 2.2 (Release 10) and earlier are obsolete and no longer supported. DSP Blockset Version 3.x (Release 11) might also be obsoleted in a future release.

Compatibility Considerations

Models that contain blocks from Versions 2.2 and earlier will have broken links when loaded into Simulink 6.0 (Release 14). If you have models that contain blocks from DSP Blockset Versions 2.2 or earlier, replace the older blocks by blocks from DSP Blockset Versions 4.0 (Release 12) or later before upgrading to Signal Processing Blockset 6.0 software (Release 14). Use the command dsp_links to facilitate this process.

Compatibility Summary for Signal Processing Blockset™ Software

This table summarizes new features and changes that might cause incompatibilities when you upgrade from an earlier version, or when you use files on multiple versions. Details are provided in the description of the new feature or change.

Version (Release)	New Features and Changes with Version Compatibility Impact	
Latest Version V6.7 (R2008a)	See the Compatibility Considerations subheading for each of these new features or changes:	
	• "Tunability Status Changed for Stack and Queue Blocks" on page 5	
	• "DSP Constant Block Removed in Favor of Constant Block" on page 6	
	• "Obsolete Blocks" on page 7	
V6.6 (R2007b)	See the Compatibility Considerations subheading for each of these new features or changes:	
	"New To Audio Device and From Audio Device Blocks" on page 9	
	• "Tunability Status Changed for Some Block Parameters" on page 11	
	• "Levinson-Durbin Block Now Treats Frame-Based Row Vectors Differently" on page 13	

Version (Release)	New Features and Changes with Version Compatibility Impact
V6.5 (R2007a)	See the Compatibility Considerations subheading for each of these new features or changes:
	• "R11.1 Blocks Have Been Removed in R2007a — Run Helper Script Before Upgrading" on page 15
	• "Zero Pad Block Removed" on page 18
	• "Pad Block Can Truncate Either End of an Input Signal" on page 18
V6.4 (R2006b)	See the Compatibility Considerations subheading for each of these new features or changes:
	• "R11.1 Blocks Will Be Removed in R2007a" on page 19
	• "Diagnostic Output Port Added to Report a Failure to Converge" on page 21
	"Blocks Removed from Product" on page 22
V6.3 (R2006a)	None
V6.2 (R14SP3)	None
V6.1 (R14SP2)	See the Compatibility Considerations subheading for this new feature or change:
	• "Obsolete Blocks" on page 30

Version (Release)	New Features and Changes with Version Compatibility Impact
V6.0.1 (R14SP1)	None
V6.0 (R14)	See the Compatibility Considerations subheading for this new feature or change: • "Obsolete Product Versions" on page 50